

Review Article

Natural marine sponges for bone tissue engineering: The state of art and future perspectives

Renata Neves Granito,¹ Márcio Reis Custódio,² Ana Claudia Muniz Rennó¹

¹Federal University of São Paulo (UNIFESP), Department of Biosciences, Santos - SP, Brazil

²University of São Paulo (USP), Institute of Biosciences (IB/USP), São Paulo - SP, Brazil

Received 20 December 2015; revised 24 March 2016; accepted 21 April 2016

Published online 10 May 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.b.33706

Abstract: Marine life and its rich biodiversity provide a plentiful resource of potential new products for the society. Remarkably, marine organisms still remain a largely unexploited resource for biotechnology applications. Among them, marine sponges are sessile animals from the phylum Porifera dated at least from 580 million years ago. It is known that molecules from marine sponges present a huge therapeutic potential in a wide range of applications mainly due to its antitumor, antiviral, anti-inflammatory, and antibiotic effects. In this context, this article reviews all the information available in the literature about the potential of the use of marine sponges for bone tissue engineering applications. First, one of the properties that make sponges interesting as bone substitutes is their structural characteristics. Most species have an efficient interconnected porous architecture, which allows them to process a significant amount

of water and facilitates the flow of fluids, mimicking an ideal bone scaffold. Second, sponges have an organic component, the spongin, which is analogous to vertebral collagen, the most widely used natural polymer for tissue regeneration. Last, osteogenic properties of marine sponges is also highlighted by their mineral content, such as biosilica and other compounds, that are able to support cell growth and to stimulate bone formation and mineralization. This review focuses on recent studies concerning these interesting properties, as well as on some challenges to be overcome in the bone tissue engineering field. © 2016 Wiley Periodicals, Inc. *J Biomed Mater Res Part B: Appl Biomater*, 105B: 1717–1727, 2017.

Key Words: marine sponges, natural biomaterials, bone tissue engineering, biosilica, collagen

How to cite this article: Granito RN, Custódio MR, Rennó ACM. 2017. Natural marine sponges for bone tissue engineering: The state of art and future perspectives. *J Biomed Mater Res Part B* 2017:105B:1717–1727.

INTRODUCTION

Fracture healing is a multistage repair process that involves complex and well-orchestrated steps that are initiated in response to the injury, with the purpose of recovering bone function. Especially important in this process are the interactions among cells of the mesenchymal stem cell-osteoblast lineage and the monocyte-macrophage-osteoclast lineage.¹ Osteoblasts are metabolically active bone-forming cells, responsible by secreting unmineralized organic matrix at the site of the injury that subsequently undergoes mineralization, giving strength, and rigidity to the bone callus. Osteoclasts are multinucleated, bone-resorbing cells, responsible by dissolving the inorganic and organic matrices, contributing to bone remodeling.²

In general, bone tissue has the ability of healing itself.¹ However, under critical conditions, like in large bone defects and fractures with inadequate or interrupted vascularization, the response of the body is insufficient and results in

the synthesis of collagenous scar tissue with little restoration of original structure or function. In recent years, medical procedures for repairing injured tissues have aimed to replace the damaged part with synthetic prostheses or tissue grafts. Nevertheless, their use involves several problems such as high costs, side effects with harmful immunological responses, and limited donor tissues.^{3–5}

In this context, tissue engineering (TE) has been emerging as a promising field to develop appropriate models and technologies to promote regeneration of human tissues or to replace damaged or defective organs.⁶ TE strategies include cell-based therapies to create new tissues via cellular biochemical machinery stimulation.^{7,8} Furthermore, the implantation of nonliving components, such as three-dimensional (3D) scaffolds or matrices, has been widely studied, especially to support cell attachment and growth.⁹ Indeed, 3D scaffolds are one of the most promising experimental approaches for regenerating the native structural

Correspondence to: R. N. Granito (e-mail: re_neves@yahoo.com.br)

TABLE I. Classification of Marine Sponges

Classification of Marine Sponges				
Kingdon	Animalia			
Phylum	Porifera			
Classes	Demospongiae	Homoscleromorpha	Hexactinellida	Calcarea
Main Characteristics	The largest and most diverse class, containing some marine and all freshwater species. Skeleton is highly variable, made by siliceous spicules or only collagen fibers, or combinations of both in various degrees. Sometimes the skeleton can include sand grains or other foreign inorganic material or be absent, with the sponge body reinforced by a dense collagen matrix (e.g., Chondrosia).	Small group with some peculiar characteristics such as the presence of a basal membrane of collagen type IV and ciliated pinacocytes. The skeleton can contain siliceous spicules, usually in low numbers, or be entirely absent.	Common in deep water and polar environments. The tissues are reduced and with a syncitial organization in some species. Skeleton of silicious spicules sometimes reaching lengths over 2 meters (<i>Monoraphis chuni</i>). In some species the spicules can fuse during the formation, composing a rigid network ("glass sponges," e.g., <i>Euplectella</i>).	Relatively common organisms below the intertidal zone, but usually of small size (mm to few cm). Unlike the siliceous spicules from all the other classes, their spicules are made of calcium carbonate, which can fuse in some species.

and functional properties of living tissues, providing a 3D physical support for *in vitro* cell culture as well as a matrix for tissue regeneration *in vivo*.^{7,8}

For a better biological performance, scaffolds should present specific characteristics, such as appropriate pore size and porosity, which are essential for cells to migrate and to grow.¹⁰ Another characteristic of an adequate scaffold is a proper biodegradability, which allows the scaffold to be replaced by the new tissue. Moreover, the degradation products of the scaffold should have low immunogenicity and cytotoxicity.¹⁰ Therefore, scaffolds must be biocompatible and should not induce any adverse response.

Many materials have been used to manufacture scaffolds, including metals (such as titanium and its alloys), ceramics, polymers, and composites.^{11,12} The properties of synthetic scaffolds can be altered to adjust porosity, micro-structure, degradation rate, and mechanics.¹³ However, there are some limitations to their use, especially the high manufacturing costs.^{12,14} To overcome these issues, natural materials have been showed to be a promising alternative for TE applications.^{15,16} A special feature is that, due to their organic component, natural materials are often more biocompatible since they offer a better interactive surface for cell attachment and growth.¹³


In this context, marine life and its rich biodiversity provide a plentiful resource of new products for society. Remarkably, the potential of marine organisms for biotechnology applications still remain largely unexploited. They have, however, interesting structural and chemical properties, which could be exploited for the development of novel medical orientated products.^{15,16} Among these organisms, marine sponges present a huge therapeutic potential in a

wide range of applications due to its antitumor, antiviral, anti-inflammatory, and antibiotic effects.^{17,18} Some studies showed that natural chemical products from sponges can act as inhibitors of transcription factors and may be effective against both malignant neoplasms and viral diseases. Also, it is interesting to highlight that the phyla alone is responsible for about 33% of all compounds obtained from marine organisms in the last 50 years, including fungi, bacteria, and algae.¹⁸

MARINE SPONGES CLASSIFICATION

Marine sponges are sessile animals from the phylum Porifera (Table I). They are considered representatives of the first multicellular animals, with origins dated at least from the late Proterozoic, over 580 million years ago.¹⁹ They are filter-feeding organisms with an extremely effective and complex network of water-conducting channels and chambers lined with flagellated cells, the choanocytes.²⁰⁻²³

Although the systematics of the group is still under debate, it is currently subdivided into four classes: Demospongiae, Homoscleromorpha, Hexactinellida, and Calcarea.^{20,24,25} Demospongiae is the largest class in the phylum and includes 81% of all sponges, with approximately 7200 species worldwide.²⁵ It is also the most variable in any parameter, and contains not only marine species but also some freshwater representatives. The Homoscleromorpha was recently elevated to the level of class.²⁶ This small group of about 100 species shows some peculiar characteristics, including the presence of a basal membrane of collagen type IV in the pinacoderm.^{21,27} The Hexactinellida, with 600 species, is common in deep water and polar environments, while the Calcarea (about 700 species) are mostly

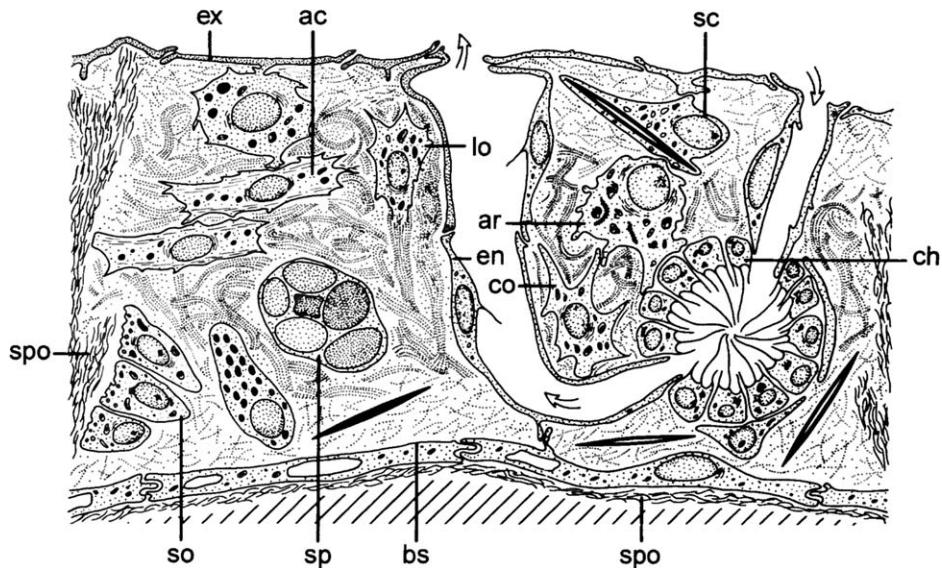


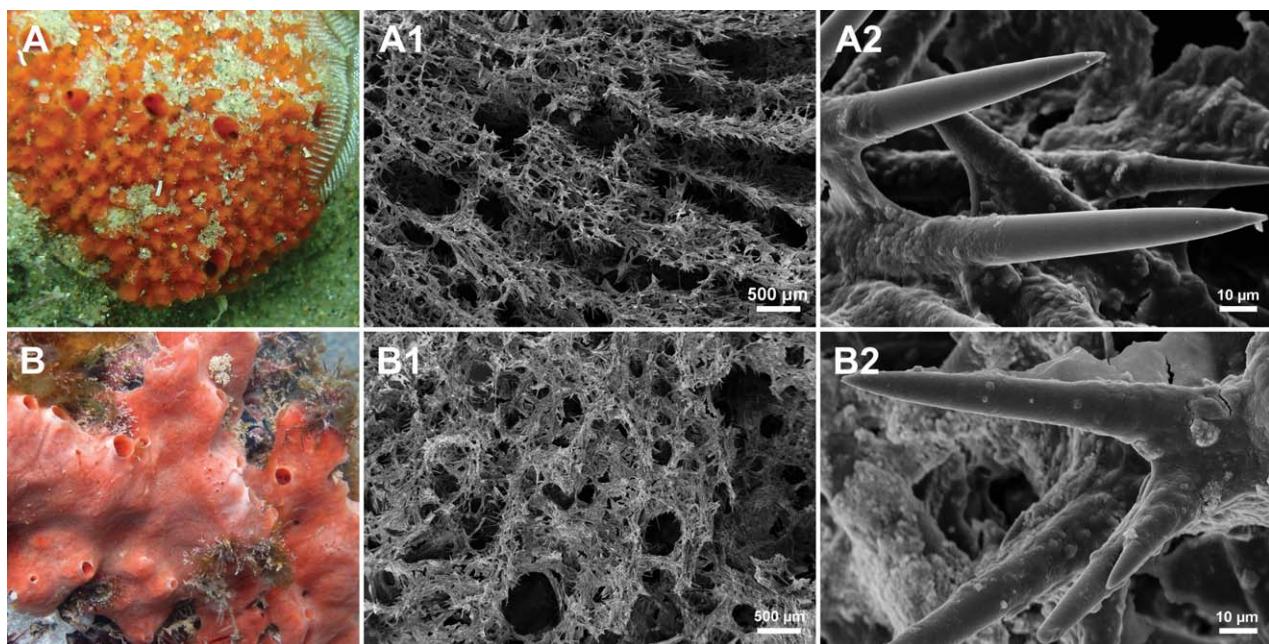
FIGURE 1. Sponge diversity: (A) *Clathria shoenus*, (B) *Haliclona* sp., (C) *Aplysilla aff. Rosea*, (D) *Haliclona implexiformis* (smooth surface) and *Tedania ignis* (irregular) exposed during the low tide (all demosponges), (E) The calcareous *Grantessa* sp. (left) and *Leucascus roseus* (right), (F) Histological section of the demosponge *Chondrosia* sp. showing canals from the aquiferous system forming pores in the collagenous matrix. Reproduced from Ref 28, with permission from permission of the author.

restricted to relatively shallow marine waters, above the carbonate compensation depths.

Although many of their characteristics like color, size, and consistency are highly variable (Figure 1), the basic structure of a sponge is relatively simple (Figure 2). Sponges are composed by a single-celled epithelial layer (pinacoderm) surrounding an extracellular matrix made of fibrillar collagen, containing specialized cells and skeletal components. In most sponges, the skeleton is made of inorganic elements, the spicules, which are formed of hydrated, amorphous,

noncrystalline silica ($\text{SiO}_2/\text{H}_2\text{O}$) in Demospongiae, Homoscleromorpha and Hexactinellida or of calcium carbonate (CaCO_3) in Calcarea. Depending on the species, the spicule formation can be either intra or extracellular, and is performed by specialized cells, the sclerocytes. While in the siliceous sponges, silica is deposited around an organic filament, no organic axial structure is found surrounding spicules from Calcarea.^{20,23} In few demosponges, the so-called *coralline* or *sclerosponges*,³⁰ a thin layer of soft tissues with siliceous spicules grows over a solid calcareous base.

FIGURE 2. General organization of a sponge. ac: actinocyte; ar: archaeocyte; bs: basopinacocyte; ch: choanocyte; co: collencyte; en: endopinacocyte; ex: exopinacocyte; lo: lophocyte; sc: sclerocyte; so: spongocyte; sp: spherulous cell; spo: spongin. Reproduced from Ref 29, with permission from the author.


The skeleton in demosponges can be made only by siliceous spicules, frequently enveloped in a variable amount of special collagen fibers called *spongin*. Other species can be devoid of spicules, presenting only a skeletal framework made of spongin fibers, including those that are commercially harvested and used as bath sponges. Spongin is defined as a modified collagenous protein, being secreted by cells known as spongocytes. Different arrangements of sponging fibers confer the diverse characteristics of flexibility observed in these animals.³¹ Interestingly, the

organization of spongin has been found to be analogous to that of human collagen type XIII.³²

SPONGES COMPOSITION: INTERESTING ELEMENTS FOR BONE TISSUE ENGINEERING

Biosilica

The siliceous spicules (Figure 3) consist of glassy amorphous silica (SiO_2), a material that is formed in the sponges under their natural physiological conditions, which would mean pH around 8.2, salinity of 30–35 and temperatures

FIGURE 3. (A) *Dragmacidon reticulatum*, (B) *Desmapsamma anchorata*. (A1, B1) SEM images showing their porous structure. (A2, B2) SEM images showing their siliceous spicules. (A, B) Reproduced from Ref 28, with permission from the author.

ranging from -2° to 30°C .^{22,23,33} The amount of spicules in some species can be very high (up to 95% of their dry weight), with different shapes and sizes varying between 0.01 and 1 mm.³⁴ However, at least one hexactinellid, the deep water *Monorhaphis chuni*, can secrete extremely large spicules, which can reach 3 m long and 1 cm wide.³⁵

Sponge biosilica has high water content (6% to 13%)^{36,37} and contains silicon, oxygen, and small amounts of Al, Ca, Cl, Cu, Fe, K, Na, S, and Zn.³⁸ Spicules are more flexible, more stable, and less fragile than silica glasses with the same dimensions, mainly due to their layered structure and hydrated nature.³⁹ Some authors analyzed the biosilica spicules from marine sponges using scanning electron and atomic force microscopy and observed that the material is nanoparticulated, with a mean diameter of 74 nm, and deposited in layers, displaying an intrinsic kinetic tendency to form an unique and organized biological structure.⁴⁰ It is known that biosilica is synthesized enzymatically by silicatein, a protein that has been isolated from siliceous sponges, for example, *Tethya aurantium* and *Suberites domuncula*.^{36,41,42} Sponges are the only organisms able to polymerize silica enzymatically and to generate massive siliceous spicules.³⁹ Also interesting is the finding that in sponge tissue, siliceous spicules are dissolved by silicase, an enzyme that is closely related to carbonic anhydrase.^{41,43}

The biosilica spicules are embedded into an organic matrix³³ and it has been demonstrated that they are non-toxic for mammalian cells, already suggesting their biocompatibility.⁴² Indeed, biosilica derived from marine sponges is being considered for biomedical approaches, bone replacement and regeneration strategies in TE,³³ specially because silica ions are known as an important element to stimulate bone formation.^{44–46} Bioactive silica glasses, for instance, bond and integrate to bone tissue through the formation of a silica gel layer, which attracts and stimulate osteoprogenitor cells to proliferate and to differentiate in osteoblasts, starting the synthesis and the deposition of bone organic matrix and matrix mineralization.^{12,14}

In this context, some authors have performed *in vitro* studies to verify the biocompatibility of biosilica derived from marine sponges. Schröder et al. (2005) demonstrated that biosilica deposition on a protein-coated surface induced a marked increase in calcium phosphate formation of SaOS-2 cells, as revealed by an increase in calcium mineral content.⁴⁷ The results suggest that by supporting calcium-phosphate deposition *in vitro*, biosilica (silicatein)-modified surfaces are potentially bioactive *in vivo* and could stimulate osteoblast mineralization function.

Furthermore, Müller et al. (2007) demonstrated that the levels of the structural molecules of the enamel matrix, amelogenin and enamelin, were higher in the presence of silica-based components extracted from *S. domuncula*, contributing to the extent of hydroxyapatite crystallite formation. Biominerization was indeed increased in this *in vitro* study using SaOS-2 cells exposed to silica. These results suggest that enzymatically synthesized bio-silica (via silicatein) might be a promising route for tooth reconstruction *in vivo*.⁴⁸

In turn it was demonstrated that silica, in particular biosilica prepared with silicatein, displayed beneficial anabolic effects on bone-forming cells (osteoblasts) and adverse effects on bone-resorbing cells (osteoclasts).⁴⁹ In the study of Wiens et al. (2010a), the expression of an osteoclastogenesis inhibitory factor, osteoprotegerin (OPG), was favored over the expression of the osteoclastogenic NF- κ B ligand (RANKL), in biosilica exposed SaOS-2 cells.⁵⁰ Therefore, the cross-talk between bone-forming and bone-resorbing cells can be affected by biosilica, suggesting that biosilica may be an approach to foster anabolic mechanisms in bone. Moreover, in the study conducted by Wiens et al. (2010b), biosilica modulated the expression of BMP2, which is an important cytokine that drives differentiation of progenitors to functional mature osteoblasts.⁵¹ The authors demonstrated that silicatein/biosilica-modified substrates from *S. domuncula* stimulated osteogenic activity of SaOS-2 cells and that gene modulation was followed by an enhanced cell proliferation and HA formation. These findings show that biosilica may have a considerable biomedical potential for treatment and prophylaxis of bone disorders.

Recently, Barros et al. (2014) investigated the potential of biosilica extracted from *Petrosia ficiformis* for the development of novel biomedical devices.³² Sponges were calcinated at 750° for the obtainment of bioceramic structures, which were submitted to alkaline (2 M KOH) or acidic treatment (2 M HCl) for bioactivity induction. The authors observed that all structures presented a hydroxyapatite-like calcium-phosphate coating and were able to support cell growth. The acidic treatment was the most effective for the nucleation of bioactive crystals and cell colonization, showing the diversity of potential applications of marine sponges in TE strategies.⁵²

Also, Wang et al. (2014) investigated the biological performance of scaffolds constituted of β -tricalcium phosphate (β -TCP), biosilica, and a biodegradable copolymer poly(D,L-lactide-co-glycolide; PLGA).³³ Determination of the biocompatibility of the β -TCP microspheres, supplemented with silica or silicatein, revealed no toxicity in the MTT-based cell viability assay using SaOS-2 cells. The adherence of SaOS-2 cells to the surface of silica-containing microspheres was higher than for microspheres containing only β -TCP. Furthermore, using an animal experimental model, it was shown that tissue/bone sections of silica containing implants showed an enhanced regeneration of bone tissue, in comparison to control implants containing only β -TCP, evidencing that the silica/biosilica-based scaffolds are promising materials for bone repair/regeneration.

Polyposphate

Apart from silica, another inorganic polymer found in the skeleton of marine sponges, the polyphosphate (polyP), may also be of interest for bone TE purposes. While silica is the main mineral component of the spicules in demosponges, polyP appears as tiny white clusters, or granules, as seen on electron microscopy.⁵¹ Two special characteristics of marine sponges may be considered for the understanding on how these granules develop: sponge's role as filter feeders and

as a lodge for many bacteria and microorganisms. It has been recently demonstrated that, while seawater is processed through the water canal system in sponges, bacteria cooperate in capturing phosphorus, and integrating it to the sponge in the form of polyphosphate, which is essential for the nourishment of the ecosystem as a whole.⁵³

For bone TE, polyP could also be an interesting component, since Müller et al. (2011) provided some *in vitro* evidence that it would also induce hydroxyapatite formation.⁵⁴ Moreover, in the study of Wang et al. (2014), human mesenchymal stem cells (hMSC) were encapsulated into the biologically inert alginate beads and the effects of biosilica and polyP on the differentiation of these multipotent cells was studied.⁵⁵ The authors showed that both polymers could drive the differentiation of hMSC to the osteogenic cell lineage and increase their mineralization potential. It was concluded that biosilica and polyP are morphogenetically active polymers that can induce osteogenesis. They are, therefore, suitable additives in 3D tissue printing for the delivery of hMSCs in bone fractures.

Taken together, the presented results suggested that biosilica and polyP obtained from marine sponges could be used for the development of new functional biomaterials exhibiting a promising potential for regenerative medicine and bone TE.

Spongin

As previously described, spongin is the main organic component of sponge fibrous skeletons and it is analogous to collagen type XIII.¹³ Collagen is one of the most widely used natural polymers for tissue bioregeneration.⁵⁶ Human collagens vary greatly in terms of size, function, and tissue distribution, but all contain one characteristic feature: a triple helix of three polypeptide chains.⁵⁷ In general, collagen has maintained a highly conserved amino acid sequence throughout the course of evolution.⁵⁸ Heinenam et al. (2007) investigated the ultrastructure of isolated fibrils of *Chondrosia reniformis*.⁵⁸ Due to the characteristic insolubility of *Chondrosia* collagen, an unique procedure for purification of the isolated sponge collagen was developed. Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS) of the purified sponge collagen showed remarkable analogy of peak positions and intensities with the spectra of fibrillar calf skin type I, despite their different phylogenetic and evolutionary origin. In another study, morphological and biochemical investigations have revealed similarities between the spongin matrix and vertebrate extracellular matrices and the orientation of collagen fibers within the sponge skeleton was similar those observed in human trabecular bone.⁵⁷ Previous studies using infra-red spectroscopy have also demonstrated that the amino acid composition of spongin and collagenous fibrils is similar to that of vertebrate collagen.¹³

Based on these similarities, collagen from allogenic and xenogenic sources has been recognized as a matrix for the development of scaffold materials for tissue repair. Collagen extracted from *Stomolophus meleagris*, an edible species of jellyfish, has been fabricated into porous scaffolds and

studied for suitability in tissue engineering. One of the advantages of the collagen from marine sources is that they are potentially safer than bovine sources, as there is no risk of bovine spongiform encephalopathy or other diseases being transmitted through the biomaterial.¹⁶

Moreover, some authors demonstrated that sponge collagen functions as a cell-matrix adhesion molecule.¹³ Collagen fibers of the marine sponge skeleton indeed provide a suitable framework for the attachment, migration and proliferation of osteoblasts. The aggregation of osteoblastic cells on spongin fibers may be attributed to its collagenous composition, together with the presentation of matrix moieties at the skeleton surface.

Based on these advantages, some authors have investigated the biocompatibility and biological performance of the organic fraction of sponges.^{13,32} A study conducted by Green et al. (2003) has demonstrated that collagen fibers of *Spongia* sp. skeleton can support the attachment, aggregation, and proliferation of human osteoprogenitor cells.³⁰ In addition, histochemical staining indicated bone matrix formation. Alkaline phosphatase specific activity in the cell-seeded spongin scaffold was significantly greater than that in control cultures grown in 2D culture plates. The attachment of osteoprogenitor cells to the scaffold also occurred in serum-free medium, indicating the presence of cell attachment proteins in the sponge skeleton. Interestingly, human osteoprogenitor cells were also found to align along the axis of the sponge fiber.³²

Similarly, Lin et al. (2011) characterized and evaluated the osteogenic potential of one unidentified marine sponge from the family *Callyspongiidae* using mouse primary osteoblasts.¹³ Scanning electronic microscopic (SEM) revealed that the sponge skeleton possessed a collagenous fibrous network consisting of interconnecting channels and a porous structure that support cellular adhesion, aggregation and growth. The average pore size of the sponge skeleton was measured 100 to 300 μm in diameter and F-actin staining demonstrated that osteoblasts were able to anchor onto the surface of collagen fibres. Alkaline phosphatase expression, a marker of early osteoblast differentiation, was evident at day 7, although expression decreased steadily in long term cultures. Using von Kossa staining, mineralization nodules were evident after 21 days. Gene expression of osteoblast markers, osteocalcin and osteopontin was also observed at 7, 14, and 21 days of culture. The authors stated that these results suggest that the natural marine sponge is promising as a new scaffold for bone tissue engineering.

Furthermore, Pallella et al. (2011) tested a tricomponent scaffold system prepared with chitosan (Chi), hydroxyapatite (HAp) derived from fish bone (*Thunnus obesus*) and a marine sponge (*Ircinia fusca*) collagen (MSCol).⁵⁹ Scaffolds were prepared using freeze-drying and lyophilization method. Characterization analysis demonstrated that the biomimetic scaffold presented a homogeneous dispersion of HAp and MSCol in chitosan matrix with interconnected porosity of 60–180 μm (Chi-HAp) and 50–170 μm (Chi-HAp-MSCol), using SEM, X-ray diffraction and optical

TABLE II. *In Vitro* and *In Vivo* Studies Developed to Access the Osteogenic Potential of Marine Sponges

Author	Species	Compound	Model Systems	Results
Green et al. (2003) ³²	<i>Spongia</i> sp.	Skeleton composed of spongin	Bone marrow cells (<i>in vitro</i>)	Skeleton supported attachment, growth and invasion of human osteoprogenitor cells. Histochemical staining for alkaline phosphatase and type I collagen indicated formation of bone matrix.
Schroder et al. (2005) ⁴⁷	<i>Suberites domuncula</i>	Biosilica	SaOS-2 cells (<i>in vitro</i>)	Increased calcium-phosphate deposition in biosilica (silicatein)-modified surfaces
Müller et al. (2007) ⁴⁸	<i>Suberites domuncula</i>	Silica-based components (Na-silicate, tetraethyl orthosilicate [TEOS], silica-nanoparticles)	SaOS-2 cells (<i>in vitro</i>)	Increased expression of genes related to enamel matrix; increased hydroxyapatite deposition
Wiens et al. (2010) ⁵⁰	<i>Suberites domuncula</i>	Biosilica	SaOS-2 cells (<i>in vitro</i>)	Increased expression of OPG in biosilica exposed cells while RANKL expression remained unchanged.
Wiens et al. (2010) ⁵¹	<i>Suberites domuncula</i>	Biosilica	SaOS-2 cells (<i>in vitro</i>)	Increased formation of HA nodules and BMP2 expression
Lin et al. (2011) ¹³	<i>Callyspongidae</i> sp.	Spongeskeleton with a collagenous fibrous network	Mouse primary osteoblasts (<i>in vitro</i>)	Cells were able to anchor onto the surface of collagen fibres, express osteoblast markers (osteocalcin and osteopontin) and form mineralization nodules.
Pallella et al. (2011) ⁵⁹	<i>Ircinia fusca</i>	A novel tricomponent scaffold (Chi-HAp-MSCol) containing chitosan (Chi), hydroxyapatite (HAp) derived from <i>Thunnus obesus</i> -bone and marine sponge (<i>Ircinia fusca</i>) collagen (MSCol)	Osteoblast-like MG63 cells (<i>in vitro</i>)	Increased cellproliferation in composite scaffolds in comparison to pure chitosan
Schroder et al. (2012) ⁴⁹	<i>Suberites domuncula</i>	Silicate	Co-cultivation assay system, using SaOS-2 cells and RAW 264.7 cells. (<i>in vitro</i>)	The SaOS-2 cells retain their capacity of differential gene expression of OPG and RANKL in favor of OPG. The number of TRAP(+) RAW 264.7 cells in particular markedly decreases, leading to a significant inhibition of osteoclastogenesis.
Barros et al. (2014) ⁵²	<i>Petrosia ficiformis</i>	Sponges after calcination	SaOS-2 cells (<i>in vitro</i>)	Cells were able to grow and colonize the bioceramic structures
Wang et al. (2014) ⁵⁵	<i>Suberites domuncula</i>	Biosilica, enzymatically synthesized from orthosilicate, and polyphosphate (polyP)	humanmultipotent stromal cells (hMSC) (<i>in vitro</i>)	Biosilica and polyP promoted growth and differentiation of hMSCs, increased mineralization in osteogenic cells and increased the expression of bone morphogenetic protein 2 (BMP-2) and alkaline phosphatase (ALP)

TABLE II. *Continued*

Author	Species	Compound	Model Systems	Results
Wang et al. (2014) ³³	<i>Suberites domuncula</i>	β -TCP microspheres, supplemented with silica or silicatein	SaOS-2 cells (<i>in vitro</i>) <i>In vivo</i>	Silica and silicatein-containing β -TCP microspheres were found to strongly enhance the mineral deposition by SaOS-2 cells Enhanced regeneration of bone tissue
Nandi et al. (2015) ⁶⁰	<i>Biemna fortis</i>	Skeleton with collagenous fibrous network loaded or not with growth factors (IGF-1 and BMP-2)	<i>In vivo</i>	Excellent osseous tissue formation

microscopy. Cell proliferation in composite scaffolds was relatively higher than in pure chitosan, as revealed by MTT assay and Hoechst staining *in vitro* using MG63 cell line. These observations suggest that the novel Chi-HAp-MSCol composite scaffold is a promising biomaterial for matrix-based bone repair.

Although sponges present an osteogenic potential, there is still a lack in the literature regarding their *in vivo* effects. Nandi et al. (2015) carried out a study aiming to characterize marine sponges as potential bioscaffolds for bone tissue engineering.⁶⁰ After collection, samples from *Biemna fortis* were freeze-dried and converted to pure cristobalite. The *in vivo* bone healing process was evaluated using chronological radiology, histology, SEM and fluorochrome labelling studies. SEM revealed that the sponge skeleton possesses a collagenous fibrous network consisting of highly internetworked porosity in the size range of 10–220 μm . XRD and FTIR analysis showed a cristobalite phase with acicular crystals of high aspect ratio, and crystallinity was found to increase from 725 to 1190°C. MTT assay demonstrated the noncytotoxicity of the samples. In the radiological, histological, scanning electron microscopy and fluorochrome labelling analysis, the sponge scaffold was shown to promote excellent osseous tissue formation. These observations suggest that the marine sponge alone or in combination with growth factors is a promising biomaterial for bone regeneration.

SPONGE STRUCTURE AND MECHANICAL PROPERTIES

One of the properties that make sponges interesting as bone substitutes is their bauplan. Sponges have an efficient interconnected porous architecture, the *aquiferous system*, which allows the animals to process significant amounts of water. This structure facilitates the flow of fluids and mimics an ideal bone scaffold material,⁶¹ making marine sponges potentially interesting for bone tissue engineering applications.

In the study of Barros et al. (2014), *Petrosia ficiformis* samples were scanned with micro-CT and presented a porosity of 73% and mean pore size of 364 μm .⁵² After calcination, organic components were eliminated, porosity and pore size increased to 83% and 510 μm , respectively.

Generally, higher porosity, pore size, and interconnectivity favor the integration between bone and graft material, since vascularization and cellular migration are benefited. According to Cunningham et al. (2010) marine sponges can be used as precursors in the production of ceramic-based tissue engineered bone scaffolds.⁶² These authors state that ceramic scaffolds developed from *Spongia agaricina* replicas demonstrated an overall porosity of 56–61% with 83% of the pores ranging between 100 and 500 μm (average pore size 349 μm) and an interconnectivity of 99.92%, which make them appropriate for bone tissue engineering purposes. The two other species being replicated in the study, *Spongia officinalis* and *Spongia zimocca*, showed less promising properties for the development of reliable and repeatable bone substitutes.

In addition to their suitable structural characteristics, the rigid framework due to the spicules confers intrinsic stiffness and toughness to the sponges, which is undoubtedly advantageous.⁶³ Some studies demonstrated that even under stress situations, sponges remain extremely strong and flexible.⁴⁰ Additionally, sponges resemble a composite material, comparable to the industrial-whiskers-reinforced composite plastics mainly due to the composition with amorphous, hydrated, silicon dioxide (SiO₂) spicules, organic content, and water.⁶⁴ Aluma et al. (2011) performed mechanical tests in the marine sponge *Cinachyrella levantensis* to determine the functionality of the sponge skeleton. Compression tests of cylindrical samples cut from these sponges revealed their macroscopic deformation mechanisms and demonstrated the role played by the spicules in maintaining the structural integrity, load carrying capacity, and strength. These authors highlight that the design parameters and mechanical properties of the sponges make them highly efficient.⁶⁵

However, taking into consideration that structural characteristics vary among different species of marine sponges (Figure 3), more studies should be developed to find an optimized matrix matching bone properties for tissue engineering applications.

Table II summarizes the findings of the *in vitro* and *in vivo* studies developed to access the osteogenic potential of marine sponges.

UNIQUE ADVANTAGES OF THE USE OF MARINE SPONGES FOR BONE TISSUE ENGINEERING

The need for new products for the treatment of bone healing related problems is on extremely high demand. Both marine biosilica and collagen spongin are compounds with interesting properties for setting up treatments and new medical products, opening new possibilities for biomedical and pharmaceutical industries. Solid scientific evidences demonstrated the stimulatory effects of marine sponge biosilica on osteogenesis, its high affinity for bone mineral and its important role in stimulating osteoblast activity. Moreover, spongin, which has similar composition and structure to vertebrate collagen, is an excellent alternative as a source of collagen proteins, with a low risk of transmission of infection-causing agents and good biocompatibility.

Biosilica- and spongin-based innovative therapeutic products may rise as an effective option to the substitute products already present in the market. It is known that most of the natural bioactive elements and resources available to treat musculoskeletal and cartilaginous problems have mainly bovine and porcine origins, which have been a matter of concern in the last years. In fact, due to religious constraints related with avoidance of porcine and bovine products and to the recent episode of the wide scale bovine spongiform encephalopathy (BSE) outbreak in bovines, other sources are being debated. Synthetic materials and molecules, which have been used for the same therapeutic purpose, similarly display some limitations to the clinical practice, especially their high manufacturing and production costs.¹² Moreover, among the several alternative products currently present in the market, few can match proper clinical performance and many lack properties like nontoxicity and osteoinductive potential. In this regard, the use of bioactive compounds from marine origins is considered highly attractive by the industry, since they are important alternative sources for the development of medical products with commercial interest.

Thus, marine sponges and their bioactive compounds are a “gold mine” with respect to the diversity of their secondary metabolites and the possibility of generating new products for society through marine biotechnology, thus contributing both to patients quality of life and to the competitiveness of several economic sectors.

FUTURE PERSPECTIVES

This article exploits *in vivo* and *in vitro* studies investigating the effects of different compounds derived from marine sponges for osteogenesis. It has been highlighted that biosilica from demosponges are of great interest because of its combination of properties, such as toughness, stiffness, and resilience. Moreover, recent data suggest an important role of biosilica and polyphosphate as morphogenetically active polymers inducing osteogenic activities.^{54,55} Last, spongin, which has similar structure to vertebrate collagen, is an excellent alternative as a source of collagen, with a low risk of transmission of infection-causing agents and good biocompatibility. The literature shows that marine sponge

compounds have osteogenic properties, supporting cell growth *in vitro*, stimulating bone formation and mineralization *in vivo*.

In this context, marine sponges are an alternative and promising resource for bone tissue engineering and for the development of biomedical products with commercial interest. However, some limitations and challenges for their use should be overcome. An extensive battery of tests investigating the biocompatibility, nontoxicity, biological performance (*in vitro* and *in vivo*), and osteogenic potential should be performed using different species of sponges, since their characteristics and composition are highly variable.

Depending on the species, sponges can be widely available and harvested at sufficient quantities in the natural environment without major supply disruptions. In addition, sponge farming *in situ* is a well-established technique since 19th century, at least for those species utilized as bath sponges.⁶⁶ However, for most species the cultivation *ex situ* or even in their natural environment is difficult.^{17,67} Thus, techniques to establish sponge aquaculture systems or farming need to be determined.

If the intention is to take advantage of the sponge structure as a natural matrix for bone replacement, another limitation that has to be considered is the reproducibility of these biomaterials. Despite natural scaffolds are often more biocompatible because of their biointeractive surface for cell colonization, synthetic biomaterials in turn can have their microstructure and physiochemical properties standardized and/or altered to adjust porosity and degradation rate, for instance.¹³ Therefore, once the design and the manufacture of the samples must follow a standard pattern to guarantee their characteristics and performance, technological approaches may be considered for the development of natural products for clinical applications.

CONCLUSION

Taken all the results together, the good osteogenic performance reached by marine sponges and/or their extracted components, especially during *in vitro* tests, encourage the development of new studies that could lead to the development of bone graft materials, which could constitute a promising alternative for the treatment of bone injuries. The aim of this review was to present the innovative use of marine sponges in the bone TE field, mainly due to their appropriate structure and composition. In the studies presented herein, the authors demonstrated that a series of different marine sponges seems to have appropriate porosity, surface chemistry, *in vitro* stability and no cytotoxicity, being also able of inducing cell growth.

Although more studies are warranted to investigate the safety and the biological performance of sponges, the development of natural biotechnological products for bone TA is a promising strategy that deserves further attention.

REFERENCES

1. Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. *Bone* 2016;86:119–130.

2. Weatherholt AM, Fuchs RK, Warden SJ. Specialized connective tissue: Bone, the structural framework of the upper extremity. *J Hand Ther* 2012;25:123–131.
3. Williams SK, Kleinert LB, Hagen KM, Clapper DL. Covalent modification of porous implants using extracellular matrix proteins to accelerate neovascularization. *J Biomed Mater Res A* 2006;78:59–65.
4. Axelrad TW, Kakar S, Einhorn TA. New technologies for the enhancement of skeletal repair. *Injury* 2007;38 Suppl 1:S49–S62.
5. Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: An update on a multi-component approach. *Injury* 2008;39 Suppl 2: S9–S20.
6. Cortesini R. Stem cells, tissue engineering and organogenesis in transplantation. *Transpl Immunol* 2005;15:81–89.
7. Dash M, Samal SK, Douglas TE, Schaubroeck D, Leeuwenburgh SC, Van Der Voort P, Declercq HA, Dubrul P. Enzymatically bio-mineralized chitosan scaffolds for tissue-engineering applications. *J Tissue Eng Regen Med* 2015; doi:10.1002/term.2048.
8. Chabaud S, Rousseau A, Marcoux TL, Bolduc S. Inexpensive production of near-native engineered stromas. *J Tissue Eng Regen Med.* 2015; doi:10.1002/term.2036.
9. Mesallati T, Buckley CT, Kelly DJ. Engineering cartilaginous grafts using chondrocyte-laden hydrogels supported by a superficial layer of stem cells. *J Tissue Eng Regen Med.* 2015; doi:10.1002/term.2033.
10. Yang WD, Gomes RR Jr, Alicknavitch M, Farach-Carson MC, Carson DD. Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds. *Tissue Eng* 2005;11:76–89.
11. Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. *Biomaterials* 2010;31:2574–2582.
12. Hench LL. The future of bioactive ceramics. *J Mater Sci Mater Med* 2015;26:86.
13. Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, Dai K, Xu J, Zheng Q, Zheng M. In vitro evaluation of natural marine sponge collagen as a scaffold for bone tissue engineering. *Int J Biol Sci* 2011;7:968–977.
14. Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. *Acta Biomater* 2015;23 Suppl:S53–S82.
15. Silva SS, Oliveira MB, Mano JF, Reis RL. Bio-inspired aloe vera sponges for biomedical applications. *Carbohydr Polym* 2014;112: 264–270.
16. Silva TH, Moreira-Silva J, Marques AL, Domingues A, Bayon Y, Reis RL. Marine origin collagens and its potential applications. *Mar Drugs* 2014;12:5881–5901.
17. Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH. Large-scale production of pharmaceuticals by marine sponges: Sea, cell, or synthesis? *Biotechnol Bioeng* 2005;90:201–222.
18. Blunt JW, Copp BR, Keyzers R, Munro MHG, Prinsep MR. Marine natural products. *Nat Prod Rep* 2015;31:116–211.
19. Xiao S, Yuan X, Knoll AH. Eumetazoan fossils in terminal proterozoic phosphorites? *Proc Natl Acad Sci USA* 2000;97:13684–13689.
20. Hooper JNA, van Soest RWM. *Systema Porifera: A Guide to the Classification of Sponges*. New York: Kluwer Academic/Plenum Publishers; 2002.
21. Leys SP, Nichols SA, Adams EDM. Epithelia and integration in sponges. *Integr Comp Biol* 2009;49:167–177.
22. Müller WEG. *Silicon Biominerization: Biology, Biochemistry, Molecular Biology, Biotechnology*. Berlin: Springer; 2003.
23. Müller WEG, Müller IM. *Porifera Research* In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G, editors. *Porifera: An Enigmatic Taxon Disclosed by Molecular Biology/Cell Biology*. Série Livros 28. Rio de Janeiro: Museu Nacional; 2007. pp 89–106.
24. Morrow C, Cárdenas P. Proposal for a revised classification of the Demospongiae (Porifera). *Front Zool* 2015;12:7.
25. Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Janussen D, Tabachnick KR, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz M-C, Cárdenas P. 2015. World Porifera Database. Available at: <http://www.marinespecies.org/porifera> (accessed on September 22, 2015).
26. Gazave E, Lapébie P, Ereskovsky AV, Vacelet J, Renard E, Cárdenas P, Borchelli C. No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. *Hydrobiologia* 2012;687:3–10.
27. Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Nor N, Miyazaki K, Yoshizato K, Garrone R. Type IV collagen in sponges, the missing link in basement membrane ubiquity. *Biol Cell* 1996; 88:37–44.
28. Hajdu E, Peixinho S, Fernandez JCC. *Esponjas Marinhas da Bahia: Guia de Campo e Laboratório*. Série Livros 45. Rio de Janeiro: Museu Nacional; 2011. 276 p.
29. Boury-Esnault N, Rützler K. *Thesaurus of sponge morphology*. Smithsonian Contributions to Zoology. Washington, D.C.: Smithsonian Institution Press. 1997: 596, 64p.
30. Chombard C, Boury-Esnault N, Tillier A, Vacelet J. Polyphyly of "Sclerosponges" (Porifera, Demospongidae) supported by 28S ribosomal sequences. *Biol Bull* 1997;193:359–367.
31. Simpson TL. *The Cell Biology of Sponges*. New York: Springer-Verlag; 1984.
32. Green D, Howard D, Yang X, Kelly M, Oreffo RO. Natural marine sponge fiber skeleton: A biomimetic scaffold for human osteoprogenitor cell attachment, growth, and differentiation. *Tissue Eng* 2003;9:1159–1166.
33. Wang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, Mitov G, Müller WE. Bioactive and biodegradable silica biomaterial for bone regeneration. *Bone* 2014;67:292–304.
34. Barthel D. Tissue composition of sponges from the Weddell Sea, Antarctica: Not much meat on the bones. *Mar Ecol Prog Ser* 1995; 123:149–153.
35. Wang X, Gan L, Jochum K, Schröder HC, Müller WE. The largest bio-silica structure on earth: The giant basal spicule from the deep-sea glass sponge *Monorhaphis chuni*. *Evidence-Based Complement. Altern Med* 2011;2011:1–14.
36. Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG. Bio-fabrication of biosilica-glass by living organisms. *Nat Prod Rep* 2008;25:455–474.
37. Jensen M, Keding R, Höche T, Yue Y. Biologically formed mesoporous amorphous silica. *J Am Chem Soc* 2009;131:2717–2721.
38. Müller WEG, Li J, Schröder HC, Qiao L, Wang X. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongidae) that evolved first from the Urmetazoa during the Proterozoic: A review. *Biogeosciences* 2007;4:219–232.
39. Müller WE, Wang X, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schlossmacher U, Wiens M. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. *Appl Microbiol Biotechnol* 2009;83: 397–413.
40. Weaver JC, Pietrasanta LI, Hedin N, Chmelka BF, Hansma PK, Morse DE. Nanostructural features of demosponge biosilica. *J Struct Biol* 2003;144:271–281.
41. Schröder HC, Perovic-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WE. Biosilica formation in spicules of the sponge *Suberites domuncula*: Synchronous expression of a gene cluster. *Genomics* 2005;85:666–678.
42. Schröder HC, Wang X, Schloßmacher U, Wiens M, Müller WEG. Biogenic inorganic polysilicates (biosilica): Formation and biomedical applications. *Prog Mol Subcell Biol* 2013;54:197–234.
43. Müller WE, Belikov SI, Tremel W, Perry CC, Gieskes WW, Boreiko A, Schröder HC. Siliceous spicules in marine demosponges (example *Suberites domuncula*). *Micron* 2006;37:107–120.
44. Weitzmann MN, Ha SW, Vikulina T, Roser-Page S, Lee JK, Beck GR Jr. Bioactive silica nanoparticles reverse age-associated bone loss in mice. *Nanomedicine* 2015;11:959–967.
45. Lewandowska-Łaniczka J, Fiejdasz S, Rodzik Ł, Kozięt M, Nowakowska M. Bioactive hydrogel-nanosilica hybrid materials: A potential injectable scaffold for bone tissue engineering. *Biomed Mater* 2015;10:015020.
46. Odatsu T, Azimaei T, Velten MF, Vu M, Lyles MB, Kim HK, Aswath PB, Varanasi VG. Human periosteum cell osteogenic differentiation enhanced by ionic silicon release from porous amorphous silica fibrous scaffolds. *J Biomed Mater Res A* 2015;103:2797–2806.
47. Schröder HC, Boreiko O, Krasko A, Reiber A, Schwertner H, Müller WE. Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. *J Biomed Mater Res B Appl Biomater* 2005;75:387–392.

48. Müller WE, Boreiko A, Wang X, Krasko A, Geurtsen W, Custódio MR, Winkler T, Lukic-Bilela L, Link T, Schröder HC. Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. *Calcif Tissue Int* 2007; 81:382–393.

49. Schröder HC, Wang XH, Wiens M, Diehl-Seifert B, Kropf K, Schloßmacher U, Müller WE. Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): Inhibition of osteoclast growth and differentiation. *J Cell Biochem* 2012;113:3197–3206.

50. Wiens M, Wang X, Schröder HC, Kolb U, Schlossmacher U, Ushijima H, Müller WE. The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. *Biomaterials* 2010;31:7716–7725.

51. Wiens M, Wang X, Schlossmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WE. Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. *Calcif Tissue Int* 2010;87:513–524.

52. Barros AA, Aroso IM, Silva TH, Mano JF, Duarte ARC, Reis RL. Surface modification of silica-based marine sponge bioceramics induce hydroxyapatite formation. *Cryst Growth Des* 2014;14:4545–4552.

53. Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. *Proc Natl Acad Sci USA* 2015; 112:4381–4386.

54. Müller WE, Wang X, Diehl-Seifert B, Kropf K, Schlossmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca²⁺ level in osteoblasts (SaOS-2 cells) in vitro. *Acta Biomater* 2011;7:2661–2671.

55. Wang X, Schröder HC, Grebenjuk V, Diehl-Seifert B, Mailänder V, Steffen R, Schloßmacher U, Müller WE. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: Potential application in 3D printing and distraction osteogenesis. *Mar Drugs* 2014;12: 1131–1147.

56. Iwatsubo T, Kishi R, Miura T, Ohzono T, Yamaguchi T. Formation of hydroxyapatite skeletal materials from hydrogel matrices via artificial biomineratization. *J Phys Chem B* 2015;119:8793–8799.

57. Exposito JY, Cluzel C, Garrone R, Lethias C. Evolution of collagens. *Anat Rec* 2002;268:302–316.

58. Heinemann S, Ehrlich H, Douglas T, Heinemann C, Worch H, Schatton W, Hanke T. Ultrastructural studies on the collagen of the marine sponge *Chondrosia reniformis* Nardo. *Biomacromolecules* 2007;8:3452–3457.

59. Pallela R, Venkatesan J, Janapala VR, Kim SK. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. *J Biomed Mater Res A* 2012;100:486–495.

60. Nandi SK, Kundu B, Mahato A, Thakur NL, Joardar SN, Mandal BB. In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial. *Integr Biol (Camb)* 2015;7:250–262.

61. Leonetti JA, Rambo HM, Thronson RR. Osteotome sinus elevation and implant placement with narrow size bioactive glass. *Implant Dent* 2000;9:177–182.

62. Cunningham E, Dunne N, Walker G, Maggs C, Wilcox R, Buchanan F. Hydroxyapatite bone substitutes developed via replication of natural marine sponges. *J Mater Sci Mater Med* 2010; 21:2255–2261.

63. Sethmann I, Wörheide G. Structure and composition of calcareous sponge spicules: A review and comparison to structurally related biominerals. *Micron* 2008;39:209–228.

64. Sandford F. Physical and chemical analysis of the siliceous skeletons in six sponges of two groups (demospongiae and hexactinellida). *Microsc Res Tech* 2003;62:336–355.

65. Aluma Y, Ilan M, Sherman D. Comments on a skeleton design paradigm for a demosponge. *J Struct Biol* 2011;175:415–424.

66. Osinga R, Sidri M, Cerig E, Gokalp SZ, Gokalp M. Sponge aquaculture trials in the East-Mediterranean Sea: New approaches to earlier ideas. *Open Mar Biol* 2010;4:74–81.

67. Schippers K, Sipkema D, Osinga R, Smidt H, Pomponi SA, Martens D, Wijffels RH. Cultivation of sponges, sponge cells and symbionts: Achievements and future prospects. *Adv Mar Biol* 2012;62:273–337.